Structural basis for the high-affinity inhibition of mammalian membranous adenylyl cyclase by 2',3'-o-(N-methylanthraniloyl)-inosine 5'-triphosphate.

نویسندگان

  • Melanie Hübner
  • Anshuman Dixit
  • Tung-Chung Mou
  • Gerald H Lushington
  • Cibele Pinto
  • Andreas Gille
  • Jens Geduhn
  • Burkhard König
  • Stephen R Sprang
  • Roland Seifert
چکیده

2',3'-O-(N-Methylanthraniloyl)-ITP (MANT-ITP) is the most potent inhibitor of mammalian membranous adenylyl cyclase (mAC) 5 (AC5, K(i), 1 nM) yet discovered and surpasses the potency of MANT-GTP by 55-fold (J Pharmacol Exp Ther 329:1156-1165, 2009). AC5 inhibitors may be valuable drugs for treatment of heart failure. The aim of this study was to elucidate the structural basis for the high-affinity inhibition of mAC by MANT-ITP. MANT-ITP was a considerably more potent inhibitor of the purified catalytic domains VC1 and IIC2 of mAC than MANT-GTP (K(i), 0.7 versus 18 nM). Moreover, there was considerably more efficient fluorescence resonance energy transfer between Trp1020 of IIC2 and the MANT group of MANT-ITP compared with MANT-GTP, indicating optimal interaction of the MANT group of MANT-ITP with the hydrophobic pocket. The crystal structure of MANT-ITP in complex with the G(s)α- and forskolin-activated catalytic domains VC1:IIC2 compared with the existing MANT-GTP crystal structure revealed only subtle differences in binding mode. The higher affinity of MANT-ITP to mAC compared with MANT-GTP is probably due to fewer stereochemical constraints upon the nucleotide base in the purine binding pocket, allowing a stronger interaction with the hydrophobic regions of IIC2 domain, as assessed by fluorescence spectroscopy. Stronger interaction is also achieved in the phosphate-binding site. The triphosphate group of MANT-ITP exhibits better metal coordination than the triphosphate group of MANT-GTP, as confirmed by molecular dynamics simulations. Collectively, the subtle differences in ligand structure have profound effects on affinity for mAC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential inhibition of adenylyl cyclase isoforms and soluble guanylyl cyclase by purine and pyrimidine nucleotides.

Mammals express nine membranous adenylyl cyclase isoforms (ACs 1-9), a structurally related soluble guanylyl cyclase (sGC) and a soluble AC (sAC). Moreover, Bacillus anthracis and Bacillus pertussis produce the AC toxins, edema factor (EF), and adenylyl cyclase toxin (ACT), respectively. 2'(3')-O-(N-methylanthraniloyl)-guanosine 5'-[gamma-thio]triphosphate is a potent competitive inhibitor of A...

متن کامل

Functional adenylyl cyclase inhibition in murine cardiomyocytes by 2’(3’)-O-(N-methylanthraniloyl)-guanosine 5’-[γ- thio]triphosphate

Department of Pharmacology (D.R., J.M., S.H.) and Center for Molecular Medicine (S.H.), University of Cologne, Germany, Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ (S.F.V.); and Department of Pharmacology and Toxicology, University of Regensburg, Germany (R.S.) JPE...

متن کامل

Molecular analysis of the interaction of anthrax adenylyl cyclase toxin, edema factor, with 2'(3')-O-(N-(methyl)anthraniloyl)-substituted purine and pyrimidine nucleotides.

Bacillus anthracis causes anthrax disease and exerts its deleterious effects by the release of three exotoxins: lethal factor, protective antigen, and edema factor (EF), a highly active calmodulin-dependent adenylyl cyclase (AC). However, conventional antibiotic treatment is ineffective against either toxemia or antibiotic-resistant strains. Thus, more effective drugs for anthrax treatment are ...

متن کامل

Structure/activity relationships of (M)ANT- and TNP-nucleotides for inhibition of rat soluble guanylyl cyclase α1β1.

Soluble guanylyl cyclase (sGC) plays an important role in cardiovascular function and catalyzes formation of cGMP. sGC is activated by nitric oxide and allosteric stimulators and activators. However, despite its therapeutic relevance, the regulatory mechanisms of sGC are still incompletely understood. A major reason for this situation is that no crystal structures of active sGC have been resolv...

متن کامل

Effects of tiazofurin on guanine nucleotide binding regulatory proteins in HL-60 cells.

Guanine nucleotide binding proteins (G proteins) are regulatory molecules that couple membrane receptors to effector systems such as adenylate cyclase and phospholipase C. The alpha subunits of G proteins bind to guanosine 5'-diphosphate (GDP) in the unstimulated state and guanosine 5' triphosphate (GTP) in the active state. Tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide), a specific ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 80 1  شماره 

صفحات  -

تاریخ انتشار 2011